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A Little Bit About Me … 

•  Education 
–  Ph.D., Computer Science 
   U. Illinois at Urbana-Champaign, 1996 

•  Professional 
–  Current Appointments 

!  Professor and Elizabeth & James Turner Fellow; Departments of Computer 
Science, Electrical & Computer Engineering, and Health Sciences;  Virginia Tech 

!  Director,  Laboratory (http://synergy.cs.vt.edu/) " SEEC Center 
!  Founder, The Green500 (http://www.green500.org/)  
!  Adjunct Faculty, Virginia Bioinformatics Institute, Virginia Tech 

–  Previous Appointments & Professional Stints 
!  Academia:  The Ohio State U. (’00-’03), Purdue U. (’98-’00), U. of Illinois at 

Urbana-Champaign (’96-’98). 
!  Government:  Los Alamos Nat’l Lab (’98-’06), NASA Ames Research Ctr (’93) 
!  Industry:  IBM T.J. Watson Rsch (’90), Vosaic (’97), Orion Multisystems (’04-’05)  
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A Little Bit About My Research … 

•  Basic and applied research in efficient parallel and distributed 
computing (in the small and the large) via the synergistic co-
design of hardware, software, and algorithms 
–  Enable scientists and engineers to concentrate  

on their science and engineering rather than  
on the computer science and engineering. 

   
VT 

Commoditization and 
Ease of Use 

Domain 
Sciences, 

Engineering, 
Commerce,  

Arts 

Parallel 
Computing 

Algorithms 
216x 

Software 
4x 

Hardware 
88x 

80,000x 

http://www.youtube.com/watch?v=zPBFenYg2Zk  
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Japanese ‘Computnik’ Earth Simulator 
Shatters U.S. Supercomputer Hegemony 
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Importance of High-Performance Computing (HPC) 

Competitive Risk From Not Having Access to HEC

3%

16%

34%

47%

Could exist and compete

Could not exist as a business

Could not compete on quality &
testing issues

Could not compete on time to market
& cost

Data from Council of Competitiveness.  
Sponsored Survey Conducted by IDC 

Competitive Risk From Not Having Access to HPC 

  Only 3% of companies could exist and 
compete without HPC. 
#  200+ participating companies, including 

many Fortune 500 (Proctor & Gamble and 
biological and chemical companies) 
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Computnik 2.0?-

•  The Second Coming of Computnik?  Computnik 2.0?-
–  No-…-“only”-43%-faster-than-the-previous-#1-supercomputer,-but-
- - -"-$20M-cheaper-than-the-previous-#1-supercomputer-
- - -"-42%-less-power-consumpEon-

•  The-Second Coming of the “Beowulf Cluster” for HPC 
–  The further commoditization of HPC 

 
 

© W. Feng, 2011-2015                        
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synergy.cs.vt.edu-

The First Coming of the “Beowulf Cluster” 

•  Utilize commodity PCs (with commodity 
CPUs) to build a supercomputer 

The Second Coming of  
the “Beowulf Cluster” 

•  Utilize commodity PCs (with commodity 
CPUs) to build a supercomputer 
       + 

•  Utilize commodity graphics processing 
units (GPUs) to build a supercomputer 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

Issue:  Extracting performance with programming ease and portability " productivity 
In other words, can we achieve “Performance + Programmability + Portability = Productivity?”  
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GPU Computing 
(Specialized) 

CPU Computing 
(General Purpose) 

+ 

CPU + GPU ≈ Left Brain + Right Brain 

Heterogeneous Parallel Computing 

© W. Feng, 2011-2015                        
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“Holy Grail” Vision 
•  Ecosystem for the New HPC:  Heterogeneous Parallel Computing 

 

 
 

–  Enabling software that tunes parameters of hardware devices                  
… with respect to performance, programmability, and portability             
… via a benchmark suite of dwarfs (i.e., motifs) and mini-apps 

 

Highest-ranked commodity supercomputer 
in U.S. on the Green500 (11/11) 
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Design of 
Composite 
Structures 

Software 
Ecosystem 

Heterogeneous Parallel Computing (HPC) Platform 
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An Ecosystem for Heterogeneous Parallel Computing 

Software 
Ecosystem 

Heterogeneous Parallel Computing (HPC) Platform 

Sequence 
Alignment 

Molecular 
Dynamics 

Earthquake 
Modeling 

Neuro- 
informatics 

CFD for  
Mini-Drones 

Applications 

^ 
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An Ecosystem for Heterogeneous Parallel Computing 
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… and then our inter-node ecosystem, 
along with application to BIG DATA 

(e.g., StreamMR) 



synergy.cs.vt.edu-

Roadmap 

© W. Feng, 2011-2015                        
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Productivity = Performance + Programmability + Portability 

Goal: Minimize the re-writing of code, e.g., CFD for mini-drones. 
CUDA " OpenCL and OpenMP " OpenACC 
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Programming GPUs 

CUDA 
•  NVIDIA’s proprietary framework 
 

OpenCL 
•  Open standard for heterogeneous parallel computing 

(Khronos Group) 
•  Vendor-neutral environment for CPUs, GPUs,  

APUs, and even FPGAs 
 

OpenACC 
•  An extension of OpenMP for GPUs 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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CUDA-Accelerated Applications 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

GOVERNMENT & DEFENSE 
Ikena: Imagery Analysis and Video Forensics 
Signal Processing Library: GPU VSIPL 
IDL and MATLAB® Acceleration: GPULib  
GIS: Manifold 
  
MOLECULAR DYNAMICS, COMPUTATIONAL 
CHEMISTRY 
OpenMM library for molecular dynamics on GPUs 
GROMACS using OpenMM 
NAMD molecular dynamics  
VMD visualization of molecular dynamics  
HOOMD molecular dynamics  
Acellera: ACEMD bio-molecular dynamics package  
BigDFT: DFT (Density functional theory) electronic 
structure 
MDGPU 
GPUGrid.net  
  
LIFE SCIENCES, BIO-INFORMATICS 
GPU HMMER 
DNA Sequence alignment: MUMmerGPU 
LISSOM: model of human neocortex using CUDA  
Silicon Informatics: AutoDock  
  
ELECTRODYNAMICS AND ELECTROMAGNETIC 
Acceleware: FDTD Solver  
Acceleware: EM Solutions  
Remcom XStream FDTD  
SPEAG Semcad X  
CST Microwave Studio  

Quantum electrodynamics library  
GPMAD : Particle beam dynamics simulator  
  
MEDICAL IMAGING, CT, MRI 
RealityServer 
GPULib:IDL acceleration  
Acceleware: Imaging Solutions 
Digisens: SnapCT tomographic reconstruction software  
Techniscan: Whole Breast Ultrasound Imaging System  
 
OIL & GAS 
Acceleware: Kirchoff and Reverse Time Migration 
SeismicCity: 3D seismic imaging for prestack depth migration 
OpenGeoSolutions: Spectral decomposition and inversion  
Mercury Computer systems: 3D data visualization  
ffA: 3D Seismic processing software  
Headwave: Prestack data processing  
  
FINANCIAL COMPUTING AND OPTIONS 
PRICING 
SciComp: derivatives pricing 
Hanweck: options pricing 
Exegy: Risk Analysis  
Aqumin: 3D Visualization of market data  
Level 3 Finance  
OnEye (Australia): Accelerated Trading Solutions  
Arbitragis Trading  
  
MATLAB, LABVIEW, MATHEMATICA, R 
CUDA Acceleration for MATLAB 
Accelereyes: Jacket™ engine for MATLAB  

GPULib: mathematical functions for IDL and MATLAB  
Integrating Simulink with CUDA using S-functions  
Enabling GPU Computing in the R Statistical Environment  
Mathematica plug-in for CUDA  
National Instruments LabView for NVIDIA GPUs 
  
 
ELECTRONIC DESIGN AUTOMATION 
Agilent EESof: ADS SPICE simulator  
Synopsys: Sentaraus TCAD  
Gauda: Optical proximity correction (OPC)  
  
WEATHER AND OCEAN MODELING 
CUDA-accelerated WRF code  
  
VIDEO, IMAGING, AND VISION APPLICATIONS 
Axxon Intellect Enterprise Video Surveillance Software 
Pflow CUDA Plugin for Autodesk 3ds Max 
RUINS Shatter CUDA Plug-in for Maya  
Bullet 3D Multi-Physics Library with CUDA Support  
CUDA Voxel Rendering Engine 
Furryball: Direct3D GPU Rendering Plugin for Maya 

See:'h)p://www.nvidia.com/object/cuda_app_tesla.html'
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OpenCL:  Write Once, Run Anywhere 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

CUDA Program 

CU2CL (“cuticle”) 

OpenCL-supported CPUs, GPUs, FPGAs NVIDIA GPUs 

OpenCL Program 
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CU2CL:  
CUDA-to-OpenCL Source-to-Source Translator† 

•  Works as a Clang plug-in to leverage its production-quality 
compiler framework 
–  Update:  Works as a standalone app! 

•  Covers primary CUDA constructs found in CUDA C and 
CUDA run-time API. 

•  Delivers performance portability when OpenCL 1.2-equivalent 
CUDA code run on same NVIDIA GPU. 

•  Focuses on functional portability … for now. 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

† “CU2CL: A CUDA-to-OpenCL Translator for Multi- and Many-core Architectures,” 
17th IEEE Int’l Conf. on Parallel & Distributed Systems (ICPADS), Dec. 2011.  
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Why CU2CL? 
•  Much larger # of apps implemented in CUDA than in OpenCL 

–  Idea 
!  Leverage scientists’ investment in CUDA to drive OpenCL adoption 

–  Issues (from the perspective of domain scientists) 
!  Writing from Scratch:  Learning Curve 
  (OpenCL is too low-level an API compared to CUDA.  CUDA also low level.) 
!  Porting from CUDA:  Tedious and Error-Prone 

•  Significant demand from major stakeholders (and Apple …) 

 

© W. Feng, 2011-2015                        
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Why Not CU2CL? 
•  Just start with OpenCL?! 
•  CU2CL only does source-to-source translation at present 

–  Functional (code) portability?  Yes. 
–  Performance portability?  Mostly no. 
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Programmability & Portability vs. Performance 

__global__ 
void MatMul(float* d_M, 
                     float* d_N, 
                     float* d_P, 
                     int W) { 
  int row = threadIdx.y; 
  int col = threadIdx.x; 
  float P_val = 0; 
  for (int k = 0; k < W; ++k) { 
    float M = d_M[row * W+ k]; 
    float N = d_N[k * W+ col]; 
    P_val += M*N; 
  } 
  d_p[row*W+col] = P_val; 
} 

void MatMul(float* M, float* N,  
     float* P, int W) {  

  for (int i=0; i<W; ++i) 
    for (int j=0; j<W; ++j) { 
      for (int k=0; k<W; ++k) { 
        P[i*W+j] += M[i*W+k]*  
                           N[k*W+j];  
      } 
  } 
} 

void MatMul(float * restrict M,  
   float * restrict N, 
   float* restrict P,  int W) {  
  int i, j, k ;  
  #pragma acc kernels   
  copyout(P[0:(W*W)]),  
  copyin(M[0:  (W*W)],N[0:(W*W)])  
  for (i=0; i<W; i++){  
    for (j=0; j<W; j++) {  
      for (k=0; k<W; k++)  
        P[i*W+j]+=M[i*W+k]* 
                              N[k*W+j] ;   
      }  
   }  

}   

__kernel  
void MatMul( global float� M, 
                    global float� N,  
                    global float� P, 
                    int W) {  
  int tx=get_global_id(0);  
  int ty=get_global_id(1); 
  for(int k=0; k<W; ++k) { 
    value+=A[ty�W+k]�B[k�W+tx];  
   } 
   C[ty�W+tx]=value; 
} 

C OpenACC CUDA OpenCL 

Most Programmable Least Programmable 

float *d_M, *d_N, *d_P; 
int matrix_size=Width*Width*sizeof(float);  
cudaMalloc(&d_M, matrix_size); 
cudaMemcpy(d_M, M, matrix_size,  
                    cudaMemcpyHostToDevice);  
cudaMalloc(&d_N, matrix_size); 
cudaMemcpy(d_N, N, matrix_size,  
                   cudaMemcpyHostToDevice);  
cudaMalloc(&d_P, matrix_size);  
dim3 dimGrid(1,1); 
dim3 dimBlock(Width,Width); 
MatMul<<<dimGrid, dimBlock>>>(d_M, d_ 
N, d_P, Width);  
cudaMemcpy(P,d_P,matrix_size, 
                   cudaMemcpyDeviceToHost);  
cudaFree(d_P); 
cudaFree(d_M); 
cudaFree(d_N); 
 

/*Code contains parts adapted from code originally written by Tim Mattson 
and obtained from: https://github.com/HandsOnOpenCL/Exercises-Solutions/blob/master/Solutions/Exercise08/ 
*/ 
char * kernelsource; 
cl_int err;  
cl_device_id device;   
cl_context context;  
cl_command_queue commands;   
cl_program program;    
cl_kernel kernel;   
size = W*W; 
h_A = (float *)malloc(size*sizeof(float)); 
h_B = (float *)malloc(size*sizeof(float)); 
h_C = (float *)malloc(size*sizeof(float)); 
cl_uint deviceIndex = 0; 
parseArguments(argc, argv, &deviceIndex); 
cl_device_id devices[MAX_DEVICES]; 
unsigned numDevices = getDeviceList(devices); 
if (deviceIndex >= numDevices) 
{ 
   printf("Invalid device index\n"); 
   return EXIT_FAILURE; 
} 
device = devices[deviceIndex]; 
char name[MAX_INFO_STRING]; 
getDeviceName(device, name); 
printf("\nUsing OpenCL device: %s\n", name); 
context = clCreateContext(0, 1, &device, NULL, NULL, &err); 
checkError(err, "Creating context"); 
commands = clCreateCommandQueue(context, device, 0, &err); 
checkError(err, "Creating command queue"); 
d_a = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
                            sizeof(float) * size, h_A, &err); 
checkError(err, "Creating buffer d_a"); 
d_b = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
                            sizeof(float) * size, h_B, &err); 
checkError(err, "Creating buffer d_b"); 
d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY, 
                            sizeof(float) * size, NULL, &err); 
checkError(err, "Creating buffer d_c"); 
kernelsource = getKernelSource(“matmul.cl"); 
program = clCreateProgramWithSource(context, 1, (const char **) &kernelsource, NULL, &err); 
checkError(err, "Creating program with matmul.cl"); 
free(kernelsource); 
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL); 
if (err != CL_SUCCESS) 
{ 
  size_t len; 
  char buffer[2048]; 
  printf("Error: Failed to build program executable!\n%s\n", err_code(err)); 
  clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len); 
  printf("%s\n", buffer); 
  return EXIT_FAILURE; 
} 
kernel = clCreateKernel(program, “MatMul”, &err); 
checkError(err, "Creating kernel with matmul.cl"); 
 
err =  clSetKernelArg(kernel, 0, sizeof(cl_mem),    &d_a); 
        err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b); 
        err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c); 
        err |= clSetKernelArg(kernel, 3, sizeof(int), &W); 
 
checkError(err, "Setting kernel args"); 
const size_t global[2] = {W, W}; 
err = clEnqueueNDRangeKernel( 
            commands, 
            kernel, 
            2, NULL, 
            global, NULL, 
            0, NULL, NULL); 
checkError(err, "Enqueueing kernel"); 
err = clFinish(commands); 
checkError(err, "Waiting for kernel to finish"); 
err = clEnqueueReadBuffer( 
            commands, d_c, CL_TRUE, 0, 
            sizeof(float) * size, h_C, 
            0, NULL, NULL); 
checkError(err, "Reading back d_c"); 

… but portable! 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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CU2CL Translation and Performance 

•  Automatically translated OpenCL codes (via CU2CL) yield 
similar execution times to manually translated OpenCL codes 
(when running on the same device) 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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Application CUDA Lines Lines Manually 
Changed 

% Auto-
Translated 

bandwidthTest 891 5 99 

BlackScholes 347 14 96 

matrixMul 351 9 97 

vectorAdd 147 0 100 

Back Propagation 313 24 92 

Hotspot 328 2 99 

Needleman-Wunsch 430 3 99 

SRAD 541 0 100 

Fen Zi: Molecular Dynamics 17,768 1,796 90 

GEM: Molecular Modeling 524 15 97 

IZ PS: Neural Network 8,402 166 98 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

Delaware 

VT 

AMD 
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Evaluating & Enhancing Productivity with CU2CL 

•  Binary:  CU2CL v0.7.0b (May 2015) 
–  Major revision – Multi-file Translation Support 
–  Overhauled invocation – “One-shot” translation of all files 

 
–  Overhauled OpenCL generation – Intelligent merging and de-duplication 

•  Source:  CU2CL v0.6.2b (May 2015) 

 

 

CUDA 
File 

CU2C
L CUDA 

File 

CU2C
L CUDA 

File 

CU2C
L 

Old Version 

One launch per source file 

CUDA 
File 

CU2CL 
CUDA 

File 
CUDA 

File 

New Version 

One launch per project 

CUDA 
File 

CUDA 
File 

Old Version 

OpenCL 
File 

OpenCL 
File OpenCL 

File 

OpenCL 
File 

Rewriter Rewriter 

Conflicts with shared headers! 

CUDA 
File 

CUDA 
File 

New Version 

Each output only generated once! 

Replacements Replacements 

OpenCL 
File 

Rewriter 

OpenCL 
File 

Rewriter 

OpenCL 
File 

Rewriter 
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See Github and  
http://chrec.cs.vt.edu/ 
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Roadmap 

© W. Feng, 2011-2015                        
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IEEE ICPADS ’11 
P2S2 ’12 

J. Parallel Computing ’13 

Productivity = Performance + Programmability + Portability 

What about  
performance portability? 

•  G. Martinez, M. Gardner, W. Feng, “CU2CL: A CUDA-to-OpenCL Translator for Multi- and Many-core Architectures,” 17th IEEE 
Int’l Conf. on Parallel & Distributed Systems (ICPADS), Dec. 2011.  

•  P. Sathre, M. Gardner, W. Feng, “Lost in Translation: Challenges in Automating CUDA-to-OpenCL Translation,” 5th Int’l Workshop 
on Parallel Programming Models and Systems Software for High-End Computing (P2S2), September 2012. 

•  M. Gardner, P. Sathre, W. Feng, and G. Martinez, “Characterizing the Challenges and Evaluating the Efficacy of a CUDA-to-
OpenCL Translator,” Journal of Parallel Computing, 39(12): 769-786, December 2013. 
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Roadmap 
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Productivity = Performance + Programmability + Portability 
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Computational Units Not Created Equal 

•  “AMD CPU ≠ Intel CPU” and “AMD GPU ≠ NVIDIA GPU” 
•  Initial performance of a CUDA-optimized N-body dwarf 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

-32% 
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Basic Execution & Architecture-Unaware Execution 
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Combined 

Optimization for N-body Molecular Modeling 

•  Optimization techniques on 
AMD GPUs 
–  Removing conditions " kernel 

splitting 
–  Local staging 
–  Using vector types 
–  Using image memory  

•  Speedup over basic OpenCL 
GPU implementation 
–  Isolated optimizations 
–  Combined optimizations 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

Isolated 

MT: Max Threads; KS: Kernel Splitting; RA: Register Accumulator;  
RP: Register Preloading; LM: Local Memory; IM: Image Memory;  
LU{2,4}: Loop Unrolling{2x,4x}; VASM{2,4}: Vectorized Access &  
Scalar Math{float2, float4}; VAVM{2,4}: Vectorized Access & Vector 
Math{float2, float4} 
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Summary:  Architecture-Aware Optimization 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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With only software changes: 
6 hours " 58 seconds 12% 
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For additional details, see 
M. Daga*, T. Scogland*, and W. Feng, 
“Architecture-Aware Mapping and 
Optimization on a 1600-Core GPU,” 
17th IEEE Int’l Conf. on Parallel and 
Distributed Systems (ICPADS), Dec. 2011.  

… for an N-Body Code (GEM) 
… on AMD Radeon 5870 GPU 
and on NVIDIA GTX 280 GPU 

Architecture-Aware Optimizations 
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Critique:  Architecture-Aware Optimizations  

•  Architecture 
–  The Good:  Two similar-generation GPUs are compared. 
–  The Bad:  The architectures are relatively old (circa 2008-2009). 
The architectures served the purpose of demonstrating the importance 
of architecture-aware optimizations. 

•  Workload 
–  The Good:  A real application code (i.e., GEM – an n-body molecular 

modeling code) is optimized 
–  The Bad:  Only one application code is optimized.   
What would be the impact of the architecture-aware optimizations be on 
other application workloads? 

•  Manual Optimization " Automatic Optimization 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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Address first two now … 
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FFT:  Fast Fourier Transform 

•  A spectral method that is  
a critical building block 
 across many disciplines 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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Peak Specifications of GPU Cards 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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Peak SP Performance & Peak Memory Bandwidth 

© W. Feng, 2011-2015                        
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Summary of Optimizations 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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Optimizations 

•  RP:  Register Preloading 
–  All data elements are first preloaded into the register file before use. 
–  Computation facilitated solely on registers 

•  LM-CM:  Local Memory (Communication Only) 
–  Data elements are loaded into local memory only for communication 
–  Threads swap data elements solely in local memory 

•  CGAP:  Coalesced Global Access Pattern 
–  Threads access memory contiguously 

•  VASM{2|4}:  Vector Access, Scalar Math, float{2|4} 
–  Data elements are loaded as the listed vector type.  
–  Arithmetic operations are scalar (float × float).  

•  CM-K:  Constant Memory for Kernel Arguments 
–  The twiddle multiplication state of FFT is precomputed on the CPU 

and stored in GPU constant memory for fast look-up. 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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Architecture-Optimized FFT 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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Architecture-Optimized FFT  
(Batched, Single Precision, 1-D, 16-pt) 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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Multi-GPU Scaling 
•  Near-linear performance scaling using multiple GPUs. 

–  Domain decomposition, with each domain partition residing on one GPU for 
duration of simulation (only ghost cells had to be exchanged on each iteration). 

–  One control CPU thread per GPU. 
–  PGI 14.1 compiler can generate code for AMD GPUs in addition to NVIDIA. 
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A sampling of relevant pubs: 
GPU Computing Gems 
BMC Bioinformatics 

J. Molecular Graphics & Modeling 
IEEE Cluster ’11 
IEEE ICPADS ’11 
IEEE HPCC ’12 

ACM/IEEE SC ’13 
IEEE ICC ’13 

ACM Computing Frontiers ’14 
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•  R. Anandakrishnan, T. Scogland, A. Fenley, J. Gordon, W. Feng, A. Onufriev, “Accelerating Electrostatic Surface Potential 
Calculation with Multiscale Approximation on Graphics Processing Units,” J. Molecular Graphics and Modelling, 28(8): 
904-910, June 2010. 

•  W. Feng, Y. Cao, D. Patnaik, N. Ramakrishnan, “Temporal Data Mining for Neuroscience” in GPU Computing Gems, 
Elsevier/Morgan-Kaufmann, Feb. 2011.  

•  M. Daga, T. Scogland, W. Feng, “Towards Accelerating Molecular Modeling via Multi-Scale Approximation on a GPU,” 
IEEE Int’l Conf. on Computational Advances in Bio and Medical Sciences (ICCABS), Feb. 2011.  

•  M. Daga, A. Aji, W. Feng, “On the Efficacy of a Fused CPU+GPU Processor for Parallel Computing,” Symp. on Application 
Accelerators in High-Performance Computing (SAAHPC), Jul. 2011.  

•  M. Elteir, H. Lin, and W. Feng, “Performance Characterization and Optimization of Atomic Operations on AMD GPUs,” 
IEEE Cluster, Sept, 2011.  

•  M. Daga, T. Scogland, W. Feng, “Architecture-Aware Mapping and Optimization on a 1600-Core GPU,” IEEE Int’l Conf. on 
Parallel and Distributed Systems (ICPADS), Dec. 2011.  

•  M. Daga and W. Feng, “Multi-Dimensional Characterization of Electrostatic Surface Potential Computation on Graphics 
Processors,” BMC Bioinformatics, 13(Suppl 5):S4, Apr. 2012.  

•  F. Ji, A. Aji, J. Dinan, D. Buntinas, P. Balaji, R. Thakur, W. Feng, X. Ma, “DMA-Assisted, Intranode Communication in GPU-
Accelerated Systems,” IEEE International Conference on High-Performance Computing and Communications, Jun. 2012.  

•  C. del Mundo, V. Adhinarayanan, W. Feng, “Accelerating FFT for Wideband Channelization.” IEEE ICC ’13, Jun. 2013. 
•  C. del Mundo, W. Feng. “Enabling Efficient Intra-Warp Communication for Fourier Transforms in a Many-Core 

Architecture”, SC|13, Nov. 2013.  
•  C. del Mundo, W. Feng. “Towards a Performance-Portable FFT Library for Heterogeneous Computing,” ACM Computing 

Frontiers, May 2014.  
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Critique:  Architecture-Aware Optimizations  

•  Architecture 
–  The Good:  Two similar-generation GPUs are compared. 
–  The Bad:  The architectures are relatively old (circa 2008-2009). 
The architectures served the purpose of demonstrating the importance 
of architecture-aware optimizations. 

•  Workload 
–  The Good:  A real application code (i.e., GEM – an n-body molecular 

modeling code) is optimized 
–  The Bad:  Only one application code is optimized.   
What would be the impact of the architecture-aware optimizations be on 
other application workloads? 

•  Manual Optimization " Automatic Optimization 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

Still to do … 



synergy.cs.vt.edu-

“Productivity = Performance + Programmability + Portability” 

Most programmable 
Most portable 

Least programmable 
Least portable 

N-body 
problem 

20x 

12x 

175x 

252x 

160x 
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885x 
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Least performance Most performance 
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“Productivity = Performance + Programmability + Portability” 

Most programmable 
Most portable 

Least programmable 
Least portable 

N-body 
problem 

20x 

12x 

175x 

252x 

160x 

183x 

885x 

1,021x 1x 

Least performance Most performance 

automate 

Example:  Stanford has ~ 1,000,000 CUDA SLOC that they 
need to translate to OpenACC/OpenMP or OpenCL 

© W. Feng, 2011-2015                        
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FUTURE#WORK#
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Paying For Performance 

•  “The free lunch is over...” † 

–  Programmers can no longer expect substantial increases in single-
threaded performance. 

–  The burden falls on developers to exploit parallel hardware for 
performance gains. 

•  How do we lower the cost of concurrency? 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

†  H. Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software,” 
Dr. Dobb’s Journal, 30(3), March 2005.  (Updated August 2009.) 
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The Berkeley View † 

•  Traditional Approach 
–  Applications that target existing 

hardware and programming 
models 

•  Berkeley Approach 
–  Hardware design that keeps 

future applications in mind 
–  Basis for future applications?  

13 computational dwarfs 
A computational dwarf is a pattern of 
communication & computation that is 
common across a set of applications.  

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

†--Asanovic,-K.,-et-al.-The'Landscape'of'Parallel'Compu@ng'Research:'A'View'from'Berkeley.-
Tech.-Rep.-UCB/EECS\2006\183,-University-of-California,-Berkeley,-Dec.-2006.--
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Methods 

N-Body 
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Structured  
Grids 
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Grids 

Monte Carlo "  
MapReduce 

Combinational Logic 
Graph Traversal 
Dynamic Programming 
Backtrack & Branch+Bound 
Graphical Models 
Finite State Machine 

and 
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Example of a Computational Dwarf:  N-Body 

•  Computational Dwarf:  Pattern of computation & communication  
 … that is common across a set of applications  

•  N-body problems are studied in 
–  Cosmology, particle physics, biology, and engineering 

•  All have similar structures 
•  An N-body benchmark can  
  provide meaningful insight  

 to people in all these fields 
•  Optimizations may be  
  generally applicable as well 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

GEM:  
Molecular Modeling 

RoadRunner Universe: 
Astrophysics 
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First Instantiation:  OpenDwarfs 
(formerly “OpenCL and the 13 Dwarfs”)-

•  Goal 
–  Provide common algorithmic methods, i.e., dwarfs, in a language that is 

“write once, run anywhere” (CPU, GPU, or even FPGA), i.e., OpenCL 
 
 
 

 

•  Part of a larger umbrella project (2008-2018), funded by the  
  NSF Center for High-Performance Reconfigurable Computing (CHREC) 

© W. Feng, 2011-2015                        
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Experimental Setup: Hardware 

Multicore CPU: 
AMD Opteron 6272 

GPU (discrete): 
AMD Radeon HD 7970 

Intel Many Integrated  
Core (MIC) Co-processor: 
Intel Xeon Phi P1750 

Field Programmable 
Gate Array (FPGA): 
Xilinx Virtex-6 LX760, 1 GB 
DRAM, PCIx connectivity 

a) AMD Llano A8-3850 
(Llano) 

Multicore CPU: AMD Llano A8-3850 
Integrated GPU (iGPU): AMD Radeon HD 
6550D 

K. Krommydas, W. Feng, … “On the Characterization of OpenCL Dwarfs on 
Fixed and Reconfigurable Platforms,” 25th IEEE Int’l Conf. on Application-specific 
Systems, Architectures and Processors (ASAP), June 2014. Best Paper Finalist 

b) AMD Llano A10-5800K  
(Trinity) 

Multicore CPU: AMD Llano A10-5800K 
Integrated GPU (iGPU): AMD Radeon HD 
7660D 

Accelerated Processing Units (APUs): 
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Experimental Setup: Software 

AMD CPU/GPU/APU: 64-bit Debian 
Linux 7.0 (Kernel 2.6.37), AMD APP SDK 
2.8, AMD Catalyst 13.1 
Intel Xeon Phi: CentOS 6.3, Intel 
OpenCL SDK XE 2013 
FPGA: Ubuntu 12.04, Xilinx ISE 12.4 

Intel Vtune 
Amplifier XE 2013 

OpenDwarfs 
- GEM (N-body methods) 
- NW (Dynamic programming) 
- SRAD (Structured grids) 
- BFS (Graph traversal) 

AMD CPU/GPU/APU:  

Intel Xeon Phi:  

AMD CodeXL 1.3 

Profiling tools 

Host systems 

Benchmarks 

K. Krommydas, W. Feng, … “On the Characterization of OpenCL Dwarfs on 
Fixed and Reconfigurable Platforms,” 25th IEEE Int’l Conf. on Application-specific 
Systems, Architectures and Processors (ASAP), June 2014. Best Paper Finalist 
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ACM ICPE ’12:   
OpenCL & the 13 Dwarfs 

IEEE Cluster ’11, FPGA ’11,  
IEEE ICPADS ’11, SAAHPC ’11, 

IEEE ICPADS ’13, IEEE ASAP ’14* 

Productivity = Performance + Programmability + Portability 

*  K. Krommydas, W. Feng, M. Owaida, C. Antonopoulos, N. Bellas, “On the Characterization of OpenCL 
Dwarfs on Fixed and Reconfigurable Platforms, 25th IEEE Int’l Conf. on Application-specific Systems, 
Architectures and Processors (ASAP), June 2014. Best Paper Finalist  
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Performance & Power Modeling 

•  Goals 
–  Robust framework 
–  Very high accuracy (Target:  < 5% prediction error)  
–  Identification of portable predictors for performance and power 
–  Multi-dimensional characterization 

!  Performance " sequential, intra-node parallel, inter-node parallel 
!  Power " component level, node level, cluster level 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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Problem Formulation:   
LP-Based Energy-Optimal DVFS Schedule 

•  Definitions 
–  A DVFS system exports n  { (fi, Pi ) } settings. 
–  Ti :  total execution time of a program running at setting i 

•  Given a program with deadline D, find a DVS schedule (t1*, …, 
tn*) such that  
–  If the program is executed for ti seconds at setting i, the total energy usage E is 

minimized, the deadline D is met, and the required work is completed. 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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Single-Coefficient β  Performance Model"

•  Our Formulation 
–  Define the relative performance slowdown δ as  
    T(f) / T(fMAX) – 1 
–  Re-formulate two-coefficient model 

 as a single-coefficient model: 

 
 
 

–  The coefficient β  is computed at run-time using a regression method on the 
past MIPS rates reported from the built-in PMU. 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

C.-Hsu-and-W.-Feng.-
“A-Power\Aware-Run\Time-
System-for-High\Performance-
CompuEng,”-SC|05,'Nov.-2005.-
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β – Adaptation on NAS Parallel Benchmarks 

C. Hsu and W. Feng. 
“A Power-Aware Run-Time System 
for High-Performance Computing,” 
SC|05, Nov. 2005. 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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Need for Better Performance & Power Modeling 

•  S 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

Source: Virginia Tech 
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Search for Reliable Predictors 

•  Re-visit performance counters used for prediction 
–  Applicability of performance counters across generations of 

architecture 

•  Performance counters monitored 
–  NPB and PARSEC benchmarks 
–  Platform: Intel Xeon E5645 CPU (Westmere-EP) 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

Context switches (CS) Instruction issued (IIS) 

L3 data cache misses (L3 DCM) L2 data cache misses (L2 DCM) 

L2 instruction cache misses (L2 ICM) Instruction completed (TOTINS) 

Outstanding bus request cycles 
(OutReq) 

Instruction queue write cycles 
(InsQW) 
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ACM/IEEE SC ’05 
ICPP ’07 

IEEE/ACM CCGrid ’09 
IEEE GreenCom ’10 

ACM CF ’11 
IEEE Cluster ’11 

ISC ’12 
IEEE ICPE ’13* 

*  B. Subramaniam and W. Feng, “Towards Energy-Proportional Computing for Enterprise-Class Server 
Workloads,” 3rd ACM/SPEC Int’l Conf. on Performance Engineering, April 2013. Best Paper Award  
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Performance Portability 

Performance Portability 
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What is Heterogeneous Task Scheduling? 

•  Automatically spreading tasks across heterogeneous compute 
resources 
–  CPUs, GPUs,  APUs, FPGAs, DSPs, and so on 

•  Specify tasks at a higher level (currently OpenMP extensions) 
•  Run them across available resources automatically 
 
 

•  A run-time system that intelligently uses what is available 
resource-wise and optimize for performance portability 
–  Each user should not have to implement this for themselves! 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

Goal 
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OpenMP Accelerator Behavior 

Original/Master thread Worker threads Parallel region Accelerated region 

#pragma omp parallel … 

#pragma omp acc_region … 

Kernels 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

Implicit barrier 
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DESIRED OpenMP Accelerator Behavior 

Original/Master thread Worker threads Parallel region Accelerated region 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 

#pragma omp parallel num_threads(2) 

#pragma omp acc_region … 

#pragma omp parallel … 



synergy.cs.vt.edu-

Work-share a Region Across the Whole System 

Original/Master thread Worker threads Parallel region Accelerated region 

#pragma omp acc_region … 

#pragma omp parallel … 

OR 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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Heterogeneous Task Scheduling 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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How to Heterogeneous Task Schedule (HTS) 

•  Accelerated OpenMP can offer heterogeneous task scheduling 
with 
–  Programmability 
–  Functional portability, given underlying compilers 
–  Performance portability 

•  How? 
–  A simple extension to Accelerated OpenMP syntax for programmability 
–  Automatically dividing parallel tasks across arbitrary heterogeneous 

compute resources for functional portability 
!  CPUs 
!  GPUs 
!  APUs 

–  Intelligent runtime task scheduling for performance portability 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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Programmability: 
Code Transformation 
•  Manual 

–  Add 20 lines 
–  Must manually split problem and reassemble results 

•  Automatic 
–  Add 1 clause 
–  Splitting and assembly are automatic 

 
# pragma omp acc_region_loop private(i) \

firstprivate(nco,no,ncl) default(none) \

acc_copyin(fc[0:ncl*nco]) present(fo) \

acc_copyout(m[0:no])

// hetero(1,dynamic)

for (i=0; i<no; i++) {

m[i] = findc(no,ncl,nco,fo,fc,i);

}

1

Our Proposed Extension 

Manual 

splitter * s = split_init(no, SPLIT_DYNAMIC, NULL, NULL);

int *m_c = (int*)malloc(sizeof(int)*no);

for(int d_it=0; d_it < s->d_end; d_it++)

{

s = split_next(no, d_it);

# pragma omp parallel num_threads(2)

{

if(omp_get_thread_num()>0)

{//CPU OpenMP code

split_cpu_start(s);

# pragma omp parallel shared(fo,fc,m_c,s) \

num_threads(omp_get_thread_limit()-1) \

firstprivate(no,ncl,nco) private(i)

{

# pragma omp for

for (i=s->cts; i<s->cte; i++) {

m_c[i] = findc(no,ncl,nco,fo,fc,i);

}

}

split_cpu_end(s);

}else{//GPU OpenMP code

split_gpu_start(s);

int gts = s->gts, gte = s->gte;

# pragma omp acc_region_loop private(i) \

firstprivate(nco,no,ncl,gts,gte)\

acc_copyin(fc[0:ncl*nco]) \

acc_copyout(m[0:no]) \

present(fo) default(none)

for (i=gts; i<gte; i++) {

m[i] = findc(no,ncl,nco,fo,fc,i);

}

split_gpu_end(s);

}

}

}

memcpy(m+s->d_ccs,m_c+s->d_ccs,

(s->d_cce-s->d_ccs)*sizeof(int));

free(m_c);

1

© W. Feng, 2011-2015                        
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CoreTSAR:  Scheduling and Load-Balancing by Adaptation 

•  Measure computational suitability at runtime 
•  Compute new distribution of work through a linear 

optimization approach 
•  Re-distribute work before each pass 

OpenMP implementation with coscheduling. This goal imposes de-
sign constraints. Most importantly, it must not require any changes,
even for memory movement, to the loop body beyond those for Ac-
celerated OpenMP. For example, no pragmas or API calls may be
inserted into the loop, nor memory access patterns be changed, as
task scheduling systems often require. All information necessary
for CoreTSAR to provide the correct data for any range of itera-
tions to any device’s memory space must be provided in the direc-
tive outside the loop. Further, we must preserve data consistency
outside the region: main memory must hold the same values when
the loop exits as it would have with Accelerated OpenMP.

Our design has two main components: the scheduling and task
inference portion; and the memory specification and management
portion. We now detail both and provide an example of their use.

3.1 Assigning Tasks
With homogeneous iterations and resources, the OpenMP static
schedule yields high performance. Since iterations can vary in run-
time, OpenMP supports additional schedule types (dynamic and
guided) to improve load balance. These schedules target hetero-
geneous iterations on homogeneous resources that have low con-
currency control costs. However, they are less appropriate for het-
erogeneous resources due to varying costs and synchronization re-
quirements. Since CoreTSAR targets heterogeneous resources with
distributed memories, we provide different schedules.

Our adaptive scheduler assigns iterations at the beginning of
parallel regions, or sub-regions. This approach reduces locking
overhead but does not balance load dynamically. To provide bal-
anced schedules, CoreTSAR predicts the time to compute an itera-
tion on each resource based on previous passes.

CoreTSAR tracks the average time to complete an iteration on
each device, which it uses to predict the amount of work each de-
vice can complete in the next pass. For example, consider a system
with two CPU cores and one GPU (one CPU core must control the
GPU). If the CPU core completes 10 iterations in the same time that
the GPU takes to copy in data, complete 40 iterations, and to copy
back the results, then the CPU should be assigned 20% of the iter-
ations in the next pass. We thus determine the relationship between
compute units and can compute the amount of work to provide each
device to balance their loads. However, we must extend this simple
approach to more than two devices and choose an initial split.

3.2 Applying Ratios
We use a linear program to extend our approach to arbitrary device
counts, a version of which was discussed briefly in our previous
work [22]. The linear program computes the iterations to assign
to each device based on their time per iteration. Figure 2 lists its
variables (Equation 1), objective function (Equation 2) and accom-
panying constraints (Equations 3-6). The program minimizes the
total deviation between the predicted runtimes for all devices. We
assume that performance of an average iteration does not change
across region instances. Thus, the time for a device to finish its
work in the next pass equals the time per iteration from the previ-
ous pass multiplied by its assigned iteration count. In practice this
assumption holds well: although the cost of iterations varies, the
same iteration in different passes often has similar performance,
rendering accuracy within a few percent for our tests.

3.3 Static Scheduling
On the first entry into a region, our static schedule uses the linear
program to assign iterations. To increase portability, we compute
default relative times per iteration at runtime rather than using a
precomputed static value (the user can also specify the ratio). Our
default assumes that one instruction cycle on a GPU core takes
the same time as one cycle on a single SIMD lane of a CPU.

I = total iterations available

ij = iterations for compute unit j

fj = fraction of iterations for compute unit j

pj = recent time/iteration for compute unit j (1)

n = number of compute devices

t+j (or t�j ) = time over (or under) equal

min(
n�1X

j=1

t+1 + t�1 · · ·+ t+n�1 + t�n�1) (2)

nX

j=0

ij = I (3)

i2 ⇤ p2 � i1 ⇤ p1 = t+1 � t�1 (4)

i3 ⇤ p3 � i1 ⇤ p1 = t+2 � t�2 (5)

...

in ⇤ pn � i1 ⇤ p1 = t+n�1 � t�n�1 (6)

Figure 2: Linear program variables, objective and constraints

While this assumption does not hold in general, we can portably
compute an initial time per iteration for each device. We compute
the time per iteration for a GPU as pg = 1

m/s and for CPU cores as
1 � pg (where m is the number of multiprocessors on a GPU and
s the SIMD width of a CPU core; in the case of multiple GPUs,
we use the largest value). For applications that are not dominated
by floating-point computation, we have considered models that
include several other factors, including memory bandwidth and
integer performance, none of which have significantly changed our
results.

3.4 Adaptive Scheduling
Our adaptive schedules (Adaptive, Split and Quick) use the static
schedule for the first pass. We then use the time that each device
takes to complete its iterations in the preceding pass as input to
our linear program for the next pass. We include all recurring data
transfer and similar overheads required to execute an iteration on a
particular device (but not one-time overheads such as the copying
of persistent data). Thus, we incorporate those overheads into the
cost of the iteration and naturally account for them. The Adaptive
schedule trains on the first instance of the region and then each
subsequent instance. The Split schedule accommodates regions that
may only run once or that may benefit from scheduling more often.
It breaks each region instance into several evenly split sub-regions,
based on the div input. Each time a sub-region completes, we use
the linear program to split the next. This schedule can provide better
load balance at the cost of increased scheduling and kernel launch
overhead. Thus, it is impractical for short regions and overhead
sensitive applications. The Quick schedule balances between the
Split and Adaptive schedules by executing a small sub-region for its
first training phase, similarly to Split. It then immediately schedules
all remaining iterations of the first region instance and uses the
Adaptive schedule for any subsequent instances. This schedule suits
applications that cannot tolerate a full instance using the static
schedule or the overhead of extra scheduling steps in every pass.

3.5 Memory Management
Moving exactly the data required is essential to efficient and correct
region execution across multiple memory spaces. Thus, we allow
the user to specify the association between a loop iteration and in-
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min(
n�1X

j=1

t+j + t�j ) (7)

nX

j=1

fj = 1 (8)

f2 ⇤ p2 � f1 ⇤ p1 = t+1 � t�1 (9)

f3 ⇤ p3 � f1 ⇤ p1 = t+2 � t�2 (10)

...

fn ⇤ pn � f1 ⇤ p1 = t+n�1 � t�n�1 (11)

(b) Modified objective and constraints

Fig. 5: Linear program optimization and performance

exactly that linear program. In order to ensure the solve itself is efficient, CoreTSAR
employs the lp solve library[Berkelaar et al. 2003], an optimized linear program solver
that can refine an existing solved tableau for a new set of inputs. This incremental ap-
proach reduces overhead since each pass tends to have similar inputs.

//items in {} are optional

#pragma acc region \

hetero(<cond>{,<devices>{,<sched.>{,<ratio>{,<div>}}}})\

pcopy{in/out}(<var>[<cond>:<num>{:<boundary>}])\

persist(<var>)

#pragma acc depersist(<var>)

hetero() inputs
<cond> Boolean, true=coschedule, false=ignore

<devices> Allowable devices (cpu/gpu/all)
<scheduler> Scheduler to use for this region

<ratio> Initial split between CPU and GPU.
<div> How many times to divide the iteration space

pcopy() and {de}persist() inputs
<var> Variable to copy.

<size> Size of each “item” in the array/matrix.
<cond> Whether this dimension should be copied.
<num> Number of items in this dimension.

<boundary> Number of boundary elements required.

Fig. 3: Our proposed extension

Figure ?? represents the time spent
in CoreTSAR scheduling 1,900 passes
through a region, or 19,000 schedul-
ing iterations with the split scheduler.
The original linear model has exponen-
tial time complexity as the number of
devices increases. In the worst case,
the split schedule with four GPUs, the
scheduling takes nearly 3⇥ longer than
the 40-second compute phase.

Two issues reduce solver performance.
The input has widely distributed val-
ues, which leads to numerical instability
and slows convergence due to frequent
floating-point error corrections. Also, all
outputs require integer values, which re-
quires the solver to refine an optimal so-
lution into an optimal integer solution
across those values, which significantly
increases computational complexity.

To alleviate these issues we remove integer output requirements by computing the
percentage of iterations to assign to each device. This choice also keeps nearly all val-
ues between zero and one, improving numerical stability. Figure ?? shows the new
objective function (Equation 7) and constraints (Equations 8-11). These changes pro-
duce the optimized results in Figure ??. With this version, the time in CoreTSAR can
actually decrease as the number of GPUs increases due to the consistency of GPU per-
formance across passes. Despite the larger matrix, the solution converges faster since
it deviates less from the previous solution.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.
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Heterogeneous Scheduling:  Issues and Solutions 

•  Issue:  Launching overhead is high on GPUs 
–  Using a work queue, many GPU kernels may need to be run 

•  Solution:  Schedule only at the beginning of a region 
–  The overhead is only paid once or a small number of times 

•  Issue:  Without a work queue, how do we balance load? 
–  The performance of each device must be predicted 

•  Solution:  Allocate different amounts of work 
–  For the first pass, predict a reasonable initial division of work.  We use 

a ratio between the number of CPU and GPU cores for this. 
–  For subsequent passes, use the performance of previous passes to 

predict following passes. 

© W. Feng, 2011-2015                        
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Benchmarks 

•  NAS CG – Many passes (1,800 for C class) 
–  The Conjugate Gradient benchmark from the NAS Parallel 

Benchmarks 

•  GEM – One pass 
–  Molecular Modeling, computes the electrostatic potential along the 

surface of a macromolecule 

•  K-Means – Few passes 
–  Iterative clustering of points 

•  Helmholtz – Few passes, GPU unsuitable 
–  Jacobi iterative method implementing the Helmholtz equation 

© W. Feng, 2011-2015                        
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Experimental Setup 

•  System 
–  12-core AMD Opteron 6174 CPU 
–  NVIDIA Tesla C2050 GPU 
–  Linux 2.6.27.19 
–  CCE compiler with OpenMP accelerator extensions 

•  Procedures 
–  All parameters default, unless otherwise specified 
–  Results represent five or more runs 

© W. Feng, 2011-2015                        
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CoreTSAR Results Across Schedulers 

Application
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Roadmap 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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Roadmap 

Much work still to be done. 
•  OpenCL and the 13 Dwarfs  Beta release pending 
•  Source-to-Source Translation  CU2CL only & no optimization 
•  Architecture-Aware Optimization  Only manual optimizations 
•  Performance & Power Modeling  Preliminary & pre-multicore  
•  Affinity-Based Cost Modeling  Empirical results; modeling in progress 
•  Heterogeneous Task Scheduling  Preliminary with OpenMP 

© W. Feng, 2011-2015                        
Los Alamos National Laboratory 
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An Ecosystem for Heterogeneous Parallel Computing 

Software 
Ecosystem 

Heterogeneous Parallel Computing (HPC) Platform 

Sequence 
Alignment 

Molecular 
Dynamics 

Earthquake 
Modeling 

Neuro- 
informatics 

Avionic 
Composites 

Applications 

Intra-Node 

^ 
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Programming CPU-GPU Clusters (e.g., MPI+CUDA) 

GPU-
device-
memory-

GPU-
device-
memory-

CPU-
main-

memory-

CPU-
main-

memory-

Network 

Rank = 0 Rank = 1 

if(rank == 0) 
{ 
  cudaMemcpy(host_buf, dev_buf, D2H) 
  MPI_Send(host_buf, .. ..) 
} 

if(rank == 1) 
{ 
  MPI_Recv(host_buf, .. ..) 
  cudaMemcpy(dev_buf, host_buf, H2D) 
} 

Node 1 Node 2 
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Goal of Programming CPU-GPU Clusters (MPI + Any Acc) 

GPU-
device-
memory-

GPU-
device-
memory-

CPU-
main-

memory-

CPU-
main-

memory-

Network 

Rank = 0 Rank = 1 

if(rank == 0) 
{ 
  MPI_Send(any_buf, .. ..); 
} 

if(rank == 1) 
{ 
  MPI_Recv(any_buf, .. ..); 
} 
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“Virtualizing” GPUs … 

Compute Node 

Physical 
GPU 

Application 

Native OpenCL Library 

OpenCL API 

Traditional Model 

Compute Node 
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VOCL Proxy 

OpenCL 
API 
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Heterogeneous HPC @ VT 

–  CPU+GPU (i.e., “left brain”+”right brain”) 
heterogeneous supercomputer 
with large-scale visualization wall 

–  Peak Performance 
!  455 trillion floating-point operations / second 

–  Debuted as the GREENEST 
 commodity supercomputer  
 in the U.S. in Nov. 2011 

 

 

 
 

–  Cost:  ~ $1M (vs. $1250M for K Computer) 

HokieSpeed Viz Wall 
(Eight 46” 3D HDTVs) 
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Conclusion 
•  An ecosystem for heterogeneous parallel computing 

 

 
 

–  Enabling software that tunes parameters of hardware devices                 
… with respect to performance, programmability, and portability             
… via a benchmark suite of dwarfs (i.e., motifs) and mini-apps 

 

Highest-ranked commodity supercomputer 
in U.S. on the Green500 (11/11) 
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Microsoft Cloud Commercial: 

Data-Intensive Biocomputing in the Cloud 
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Microsoft Cloud Infomercial: 

Data-Intensive Biocomputing in the Cloud 
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http://synergy.cs.vt.edu/  

http://www.mpiblast.org/ 

http://sss.cs.vt.edu/ 

http://www.green500.org/ 

http://myvice.cs.vt.edu/ 

http://www.chrec.org/ 

http://accel.cs.vt.edu/ 

“Accelerators ‘R Us” !

Wu#Feng,#wfeng@vt.edu,#540;231;1192#
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